Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JHEP Rep ; 6(3): 101008, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38379584

RESUMO

Background & Aims: The diagnosis of primary liver cancers (PLCs) can be challenging, especially on biopsies and for combined hepatocellular-cholangiocarcinoma (cHCC-CCA). We automatically classified PLCs on routine-stained biopsies using a weakly supervised learning method. Method: We selected 166 PLC biopsies divided into training, internal and external validation sets: 90, 29 and 47 samples, respectively. Two liver pathologists reviewed each whole-slide hematein eosin saffron (HES)-stained image (WSI). After annotating the tumour/non-tumour areas, tiles of 256x256 pixels were extracted from the WSIs and used to train a ResNet18 neural network. The tumour/non-tumour annotations served as labels during training, and the network's last convolutional layer was used to extract new tumour tile features. Without knowledge of the precise labels of the malignancies, we then applied an unsupervised clustering algorithm. Results: Pathological review classified the training and validation sets into hepatocellular carcinoma (HCC, 33/90, 11/29 and 26/47), intrahepatic cholangiocarcinoma (iCCA, 28/90, 9/29 and 15/47), and cHCC-CCA (29/90, 9/29 and 6/47). In the two-cluster model, Clusters 0 and 1 contained mainly HCC and iCCA histological features. The diagnostic agreement between the pathological diagnosis and the two-cluster model predictions (major contingent) in the internal and external validation sets was 100% (11/11) and 96% (25/26) for HCC and 78% (7/9) and 87% (13/15) for iCCA, respectively. For cHCC-CCA, we observed a highly variable proportion of tiles from each cluster (cluster 0: 5-97%; cluster 1: 2-94%). Conclusion: Our method applied to PLC HES biopsy could identify specific morphological features of HCC and iCCA. Although no specific features of cHCC-CCA were recognized, assessing the proportion of HCC and iCCA tiles within a slide could facilitate the identification of cHCC-CCA. Impact and implications: The diagnosis of primary liver cancers can be challenging, especially on biopsies and for combined hepatocellular-cholangiocarcinoma (cHCC-CCA). We automatically classified primary liver cancers on routine-stained biopsies using a weakly supervised learning method. Our model identified specific features of hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Despite no specific features of cHCC-CCA being recognized, the identification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma tiles within a slide could facilitate the diagnosis of primary liver cancers, and particularly cHCC-CCA.

2.
IEEE Trans Med Imaging ; 38(3): 741-752, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30235121

RESUMO

This paper introduces a robust 2-D cardiac motion estimation method. The problem is formulated as an energy minimization with an optical flow-based data fidelity term and two regularization terms imposing spatial smoothness and the sparsity of the motion field in an appropriate cardiac motion dictionary. Robustness to outliers, such as imaging artefacts and anatomical motion boundaries, is introduced using robust weighting functions for the data fidelity term as well as for the spatial and sparse regularizations. The motion fields and the weights are computed jointly using an iteratively re-weighted minimization strategy. The proposed robust approach is evaluated on synthetic data and realistic simulation sequences with available ground-truth by comparing the performance with state-of-the-art algorithms. Finally, the proposed method is validated using two sequences of in vivo images. The obtained results show the interest of the proposed approach for 2-D cardiac ultrasound imaging.


Assuntos
Ecocardiografia/métodos , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Artefatos , Simulação por Computador , Ecocardiografia Doppler , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes , Ultrassonografia
3.
IEEE Trans Image Process ; 27(1): 64-77, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28922120

RESUMO

This paper introduces a new method for cardiac motion estimation in 2-D ultrasound images. The motion estimation problem is formulated as an energy minimization, whose data fidelity term is built using the assumption that the images are corrupted by multiplicative Rayleigh noise. In addition to a classical spatial smoothness constraint, the proposed method exploits the sparse properties of the cardiac motion to regularize the solution via an appropriate dictionary learning step. The proposed method is evaluated on one data set with available ground-truth, including four sequences of highly realistic simulations. The approach is also validated on both healthy and pathological sequences of in vivo data. We evaluate the method in terms of motion estimation accuracy and strain errors and compare the performance with state-of-the-art algorithms. The results show that the proposed method gives competitive results for the considered data. Furthermore, the in vivo strain analysis demonstrates that meaningful clinical interpretation can be obtained from the estimated motion vectors.This paper introduces a new method for cardiac motion estimation in 2-D ultrasound images. The motion estimation problem is formulated as an energy minimization, whose data fidelity term is built using the assumption that the images are corrupted by multiplicative Rayleigh noise. In addition to a classical spatial smoothness constraint, the proposed method exploits the sparse properties of the cardiac motion to regularize the solution via an appropriate dictionary learning step. The proposed method is evaluated on one data set with available ground-truth, including four sequences of highly realistic simulations. The approach is also validated on both healthy and pathological sequences of in vivo data. We evaluate the method in terms of motion estimation accuracy and strain errors and compare the performance with state-of-the-art algorithms. The results show that the proposed method gives competitive results for the considered data. Furthermore, the in vivo strain analysis demonstrates that meaningful clinical interpretation can be obtained from the estimated motion vectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...